This page provides a series of usage examples demonstrating how to configure Pods using data stored in ConfigMaps.
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube, or you can use one of these Kubernetes playgrounds:
To check the version, enter kubectl version
.
Define an environment variable as a key-value pair in a ConfigMap:
kubectl create configmap special-config --from-literal=special.how=very
Assign the special.how
value defined in the ConfigMap to the SPECIAL_LEVEL_KEY
environment variable in the Pod specification.
kubectl edit pod dapi-test-pod
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh", "-c", "env" ]
env:
# Define the environment variable
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
# The ConfigMap containing the value you want to assign to SPECIAL_LEVEL_KEY
name: special-config
# Specify the key associated with the value
key: special.how
restartPolicy: Never
Save the changes to the Pod specification. Now, the Pod’s output includes SPECIAL_LEVEL_KEY=very
.
As with the previous example, create the ConfigMaps first.
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.how: very
apiVersion: v1
kind: ConfigMap
metadata:
name: env-config
namespace: default
data:
log_level: INFO
Define the environment variables in the Pod specification.
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh", "-c", "env" ]
env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.how
- name: LOG_LEVEL
valueFrom:
configMapKeyRef:
name: env-config
key: log_level
restartPolicy: Never
Save the changes to the Pod specification. Now, the Pod’s output includes SPECIAL_LEVEL_KEY=very
and LOG_LEVEL=info
.
Note: This functionality is available to users running Kubernetes v1.6 and later.
Create a ConfigMap containing multiple key-value pairs.
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
SPECIAL_LEVEL: very
SPECIAL_TYPE: charm
Use envFrom
to define all of the ConfigMap’s data as Pod environment variables. The key from the ConfigMap becomes the environment variable name in the Pod.
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh", "-c", "env" ]
envFrom:
- configMapRef:
name: special-config
restartPolicy: Never
Save the changes to the Pod specification. Now, the Pod’s output includes SPECIAL_LEVEL=very
and SPECIAL_TYPE=charm
.
You can use ConfigMap-defined environment variables in the command
section of the Pod specification using the $(VAR_NAME)
Kubernetes substitution syntax.
For example:
The following Pod specification
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)" ]
env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: SPECIAL_LEVEL
- name: SPECIAL_TYPE_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: SPECIAL_TYPE
restartPolicy: Never
produces the following output in the test-container
container:
very charm
As explained in Configure Containers Using a ConfigMap, when you create a ConfigMap using --from-file
, the filename becomes a key stored in the data
section of the ConfigMap. The file contents become the key’s value.
The examples in this section refer to a ConfigMap named special-config, shown below.
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.level: very
special.type: charm
Add the ConfigMap name under the volumes
section of the Pod specification.
This adds the ConfigMap data to the directory specified as volumeMounts.mountPath
(in this case, /etc/config
).
The command
section references the special.level
item stored in the ConfigMap.
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh", "-c", "ls /etc/config/" ]
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
# Provide the name of the ConfigMap containing the files you want
# to add to the container
name: special-config
restartPolicy: Never
When the pod runs, the command ("ls /etc/config/"
) produces the output below:
special.level
special.type
Use the path
field to specify the desired file path for specific ConfigMap items.
In this case, the special.level
item will be mounted in the config-volume
volume at /etc/config/keys
.
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: gcr.io/google_containers/busybox
command: [ "/bin/sh","-c","cat /etc/config/keys" ]
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
name: special-config
items:
- key: special.level
path: keys
restartPolicy: Never
When the pod runs, the command ("cat /etc/config/keys"
) produces the output below:
very
You can project keys to specific paths and specific permissions on a per-file basis. The Secrets user guide explains the syntax.
When a ConfigMap already being consumed in a volume is updated, projected keys are eventually updated as well. Kubelet is checking whether the mounted ConfigMap is fresh on every periodic sync. However, it is using its local ttl-based cache for getting the current value of the ConfigMap. As a result, the total delay from the moment when the ConfigMap is updated to the moment when new keys are projected to the pod can be as long as kubelet sync period + ttl of ConfigMaps cache in kubelet.
You must create a ConfigMap before referencing it in a Pod specification (unless you mark the ConfigMap as “optional”). If you reference a ConfigMap that doesn’t exist, the Pod won’t start. Likewise, references to keys that don’t exist in the ConfigMap will prevent the pod from starting.
If you use envFrom
to define environment variables from ConfigMaps, keys that are considered invalid will be skipped. The pod will be allowed to start, but the invalid names will be recorded in the event log (InvalidVariableNames
). The log message lists each skipped key. For example:
kubectl get events
LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGE
0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames {kubelet, 127.0.0.1} Keys [1badkey, 2alsobad] from the EnvFrom configMap default/myconfig were skipped since they are considered invalid environment variable names.
ConfigMaps reside in a specific namespace. A ConfigMap can only be referenced by pods residing in the same namespace.
Kubelet doesn’t support the use of ConfigMaps for pods not found on the API server.
This includes every pod created using kubectl or indirectly via a replication controller.
It does not include pods created via the Kubelet’s --manifest-url
flag, --config
flag, or the Kubelet REST API.
Note: These are not commonly-used ways to create pods.